skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kwon, S Joon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Native oxides form on the surface of many metals. Here, using gallium‐based liquid metal alloys, Johnson‐Kendall‐Roberts (JKR) measurements are employed to show that native oxide dramatically lower the tension of the metal interface from 724 to 10 mN m−1. Like conventional surfactants, the oxide has asymmetry between the composition of its internal and external interfaces. Yet, in comparison to conventional surfactants, oxides are an order of magnitude more effective at lowering tension and do not need to be added externally to the liquid (i.e., oxides form naturally on metals). This surfactant‐like asymmetry explains the adhesion of oxide‐coated metals to surfaces. The resulting low interfacial energy between the metal and the interior of the oxide helps stabilize non‐spherical liquid metal structures. In addition, at small enough macroscopic contact angles, the finite tension of the liquid within the oxide can drive fluid instabilities that are useful for separating the oxide from the metal to form oxide‐encased bubbles or deposit thin oxide films (1–5 nm) on surfaces. Since oxides form on many metals, this work can have implications for a wide range of metals and metal oxides in addition to explaining the physical behavior of liquid metal. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025